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A FLUID 

The presence of a temperature gradient (occasioned by the dependence of the coefficient 
of surface tension on temperature) on a free fluid surface gives rise to tangential stresses 
on this surface. This in turn results in motion of the fluid - in so-called capillary convec- 
tion [ 11. 

We shall solve the problem of steady-state thermocapillary convection due to a point 
heat source of constant power situated on the free surface of a fluid filling a half-space, 

Let a fluid fill the half-space z > 0. On the surface t = 0 of the fluid we have a point 
heat source of constant power Q. There is no gravitational field. (The latter condition is in 
a sense equivalent to the absence of thermal expansion of the fluid, since the Archimedeam 
force which occasions volume convection is absent both in the absence of a gravitational 
field and in a thermally undeformahle fluid). We shall solve the problem in a spherical coor- 
dinate system whose origin coincides with the heat source and whose polar axis is directed 
along Z. The angle 6 is measured from the polar axis. The Eqs. and boundary conditions 
describing capillary_ convection can then be written as 

(vV)v=-V(p/p)+vgv, vVT=xnT, divv=O (1) 

The following conditions are satisfied on the free surface 6= % n: 
i au, aa aT aT 

qy~=~~ar, vg=O, ==O for r#O (2) 

The velocity and temperature must vanish at infinity. 
The total thermal flux through the hemisphere with its center at the origin is a constant 

independent of the radius of the sphere, 

Here 7 is the dynamic viscosity, x the thermal diffusivity, a the coefficient of surface 
tension, p the density, and c the specific heat of the fluid at constant pressure. 

Let the coefficient of surkce tension a depend linearly on temperature. Then au/d T = 
= conat and the boundary value problem under consideration admits of the separation of varf- 
ables 

+%(6) 
vJ.= - 

02 (6) (4) 
r ’ y 0 = - 

r * 
T=!?%!(6) 

r 
From the symmetry conditions we find that 

VW - 0, a (...) / acp = 0 (5) 
Substituting (4) and (5) into boundary conditions (1) and (2) and eliminating the prosaura, 

we obtain 
(--e,s + 81’8, - err)’ + 28,0,’ = v (el” + 8,’ cot 6 - 2e1 - 28,’ - 28, cot 6 + 

+ 2e;t+ 28, cot 6 + 48,’ - 28,/sinr if)’ (6) 

8, + 8,’ + 8, COt 6 = 0 (7) 

- e,e, + e,e3’ = x csc 6 (e,’ sin 6)’ (8) 
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The conditions on the free surface 6 = #n are: 
qe;=e2a~iaT, B,=o, 8;=u for r+o 

The condition of constant thermal flux is 
oia 

’ 2n 
I 

(8& $- xe8) sin 6d6 ==: 6 

(9) 

(10) 

From the symmetry conditions we find that 
8; =ap/a6=0,’ =ea=O for 8 = 0 (11) 

The conditions of decrease at infmity are fulfflIed automatically if we write the sofntion 
in form (4). Integrating Eqs. (6) and (8) once and elim~nating~~ by means of continuity Eq. 
(71, we obtain 

-e2f2 _ se;e, 00t ,6 + 822 - 828;’ - Y (--e2rfr - 28,” COt 6 + 8; cot2 6 - 
-8, cot 6 I sina Zp - 20, cot 8) + A@ = 0 (12) 

828, = ~8,’ (13) 
Eq. (12) contains the integration constant A v 

don constant in Eq. (13) is equal to zero. 
2. By virtue of conditions (ll), tire integra 

Let as integrate Eq. (12) once more. Tbfs yields 04) 
8, fe, sin 6)’ - v sin 9 (@a” -t 82’ cot 6 - 82 / sina 6 + 28,) - Av2 (1 - cos 6) = 0 

Ilrt~ integration constsnt was chosen here in accordance with condition (11). Eq. (14) ad- 
mits of yet another integration, 

l/s (e, sin 13)~ + v (43,’ sin2 6 + 6, sin IY co&) - Va A+ (I - cos 6)* = 0 (15) 
Here the integration constant is chosen in such a way as to guarantee Mfillment of con- 

dition (IX). 
Eq. (15) can be transformed into 

g i_G=& (UZ 62 
2v sin0 3 v=l i_cos@ 1 

Let us rewrite this Eq. as 

exp ~-s~d~)~~ex~s~d~~ =-& (16) 

Eq. (161 is an ordinary linear equation in the exponential. It is a special case of the eq- 
uation derived by Slezkin [2] for jets associated with pulse sources. Solving it, we obtain 

exp 
s 

udv = const (z? _1- Bvu*) , II 1,2 = I/% (1 + 1/l -+ A) 

Returning to the function 8,. we find that 
A v sin 6 

e‘&==-- 2 
(1 i_ ens @)nl-l - (1 _t cos I!%)*~~ 

rz2 (1-k cos ,,I”’ - rzl (i + cos @)“i 
(171 

The integration constant B was chosen in accordance with condition (9). Substituting 
(17) into (13), we find that 

C 

es -= [rr1? (1 + cos @)n’ - 111 (I + cos t?p 12’ ’ 
p=+ (18) 

Here P is tbe Prandtl number. The constant C can be determined from condition (9), 

Finally, the constant A can be determined from the condition of a constant thermal flux 
(10). Substituting 0, and 0, into (lo), we obtain 

F = 1112P - rz$P 
(19) 

Eq. (19) gives A in terms of the heat source power Q and of the flaid parameters, so that 
A for a given fluid depends only on Q. 

From (19) we see that small Q correspond to small A. Expanding the integral in (19) in 
powers of A, we find that for small Q 
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da/d1 
rl;-- 

2nvqx Q +-.. 
f20f 

For arbitrary Q the integral in (19) cannot be investigated in general form. But for a giv- 
en Prsndtl number the function A (Q) can be found by numerical integration in the required 
interval of A values. interval of A values. 

3KiI 

~~~~ 

Fig. 1 shows the curve of A (Q) for water (P = 7). 
Clearly, A is a single-valued function of Q throughout 

20 the entire range of A values considered. 
From (19) we see that the domain of existence of the 

10 - integral in (19) is bounded witb respect to A, i.e. for 

- l?lyl lx negative A values of sufficiently large absolute value 

6 
the integral in (19) (and with it the whole of the solution 

I -IO- 
obtained) is meaningless. This occurs for values of A 
for which P(u) vanishes. The functions 8 (8) and 0, 

Fig. 1 (8) then go to infinity and the integral in 19) loses its i” 
meaning. Let us find this terminal value of A. 

We begin by showing that this value lies to the left of f- 1). Let ua aet 

E= I/1+.1 

F (v) = (r/z& - ‘it) u’/~+‘/*~ + (r/ge + 1/B) y’/“/‘e zz. 

= v/L [a cash (l/z@ In V) - sinh (~/YE In v)], (1 d v d 2) 
Clearly, F(u) does not vanish for sny u in the rsnge 1s w ,< 2 provided that A > - 1 

(i.e. provrded that E is real and not eqnal to zero). At the point a = 0 (A = - 1) the resul- 
ting value is formally nseless. This is becsase at the point A = - 1 Eq. (16) has an adjoint 
solution, so that 

exp s 
udv -= const (v’~~ 3. BV’J~ In p) (21) 

The fnnctions@2(~CJ) and Q,(6) which can be found from (21) do not have singulsritfes. 
Hence, a solution exists for E = 0. 

We may, however, disregard the adjoint saIntion and to obtain tbe solution for E = 0 by 
taking tbe limit of the resnlting solution (17) and (18) as A + - 1. The integral in (19) ex- 
ists in this csse. Thus, the point E s 0 (A s - 1) is not the terminal point for the aolntion 
obtained. Let us now consider A < - 1, for which we have 

ff F;;L ;; ;VU I le I co9 (Vq 1 E I III 24 - sin W2 I E I In 41 (1 G 0 G 2) 
, en 

t~(VzlelW =lel 
Thin Eq. has rootn. The smalleet value of 1 E 1 for which a root lies in the interval 1 ,< 06 

4 2 satisfies the condition 
tatt(Yr]e,Iln2)=1~~] 

Hence, IE,~ = 3.73* so that Aa = - 1 - le,ls= - 14.9. Thus, the solution of the problem 
obtained above ceases to exist for A = A+ 31 - l&g. 

3b 

Fig, 3 
3a 
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Figs. 2 to 4 indicate the character of the motion and of tbe temperature field. The cal- 
culations were carried out for water. Fig. 2 shows the streamlines (A = 2.24) and Fig. 3 

the isotherms for A = 0.44 (30) and A = 2.24 (3b). Isotherm 3a corres- 
ponds to amall Q. In this case heat transfer occurs largely through 
thermal diffusion. Figs. 2 and 3b afford a clear piczure of the capil- 
lary convection mechanism: the capillary forces give rise to a char 
eater&tic spread of the fluid along the surface with “suck-in” toward 
the vertical. In spreading from the heat source along the surface tbe 
fluid takes the isotbemts with it, so that the latter are extended al- 
ong the surface, while the stream “sucked in” along the z-axis com- 
presses the isotherms at the center. Finally, the shape of the iso- 
tbsws indicates &at a boundary layer is formed near the surface (a 
sufficient distance away from the heat source). 

For negative values of A the fluid flows along the surface toward 
the origin (toward the heat source), bunching the isotherms toward 

Fig. 4 
the vertical axis. It flows inward into the depths of the fluid along 

the vertical axis, taking the isotherms with it. This behavior of the 
isotherms ia clearly apparent from Fig. 4, where they are sbown for A = - 2.33. The corres- 
ponding streamlines resemble tboae in Fig. 2, although the direction of motion is now rever- 
sed. 

The anthers are grateful to G.F. Shaidurov for drawing their attention to the problem. 
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