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The presence of a temperature gradient (occasioned by the dependence of the coefficient
of surface tension on temperature) on a free fluid surface gives rise to tangential stresses
on t.h[isj surface. This in turn results in motion of the fluid — in so-called capillary convec-
tion [ 1).

We shall solve the problem of steady-state thermocapillary convection due to a point
heat source of constant power situated on the free surface of a fluid filling a half-space,

Let a fluid fill the half-space z > 0. On the surface z = 0 of the fluid we have a point
heat source of constant power Q. There is no gravitational field. (The latter condition is in
a sense equivalent to the absence of thermal expansion of the fluid, since the Archimedeam
force which occasions volume convection is absent both in the absence of a gravitational
field and in a thermally undeformable fluid). We shall solve the problem in a spherical coor-
dinate system whose origin coincides with the heat source and whose polar axis is directed
along z. The angle ¢ is measured from the polar axis. The Eqs. and boundary conditions
describing capillary convection can then be written as

(VWIV=—V (p/p)+vAV, VT =yAT, divv=0 8y
The following conditions are satisfied on the free surface &= % n:
1 v, da oT or
NG =7 o =0 g =0 for reko @

The velocity and temperature must vanish at infinity.
The total thermal flux through the hemisphere with its center at the origin is a constant
independent of the radius of the sphere,

an n/3
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S de S [”rT“Xa—];] risin 9 df = 2 (3)
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Here 7) is the dynamic viscosity, ) the thermal diffusivity, a the coefficient of surface
tension, p the density, and ¢ the specific heat of the fluid at constant pressure.

Let the coefficient of surface tension a depend linearly on temperature. Then da/d3 7T =
= const and the boundary value problem under consideration admits of the separation of vari-

ables
61 (8) 0:(9) 8 (#) (4)
P T, Y=, T=
From the symmetry conditions we find that
v, = 0, 8(..)/dp =0 (5)

Substituting (4) and (5) into boundary conditions (1) and (2) and eliminating the pressure,

we obtain
(—6,2 + 6,0, — 6,%) + 268,8," = v (6, + 6,’ cot¥ — 28, — 26, — 26, cot ¥ +

+ 28, + 28, cot ¢+ 48, — 20,/sin? BY (6)
6,4+ 6, +8,cotd =0 (7)
—8,8; + 6,8,’ =y csc (8, sin ) (8)
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The conditions on the free surface ¥ = %7 are:

18, =840 /0T, 8, =0, 8,/ =0 for r=£0 (9
The condition of constant thermal flux is
/2
2 S (8185 - 183) sin HdH 7% (10)
»

From the symmetry conditiong we find that
8, =0p/d0 =86, =8,=0 for $=0 (1)
The conditions of decrease at infinity are fulfilled automatically if we write the solution
in form (4). Integrating Eqs. (6) and (8) once and eliminating ®; by meens of continuity Eq.
{7}, we obtain
—~0,% — 30,/6,cot ¥ + 6,2 — 8,0, — v (—6,"" — 28, cot ¥ + 6, cot2 ¥ —
—8, cot &/ sin? & — 20, cot §) + Av? = 0 (12)

8,8, = 48, (13)
Eq. (12) contains the integration constant Av 2. By virtue of conditions (11), the integra-
tion constant in Eq. (13) is equal to zero.
Let us integrate Eq. (12) once more. This yields 14
0, (8, sin ) — vsind (8, + 8,  cot+ — 0, /sin? ¢ + 28,) — Av* (1 — cos &) = 0
‘The integration constant was chosen here in accordance with condition (11), Eq. (14) ad-
mits of yet another integration,
Yy (B4 8in )2 + v (—8, sin? § -+ 6, sin § cos®) — Y, AV (1 —cos )2 =0 (15)
Here the integration constant is chosen in such a way as to guarantee fulfillment of con-
dition (11).
Eq. (15) can be transformed into

u A B2
PR N CEL - SR PR
Let us rewrite this Eq. as
d? f A
exp <— S udv) P (exp S udv) = Gt (16)

Eq. (16) is an ordinary linear equation in the exponential. It is a special case of the eq-
uation derived by Slezkin [2] for jets associated with pulse sources. Solving it, we obtain

exp S udy = const (2™ - Bs™), nyo=2(1 % V1+a)
Returning to the function @)2, we find that
o Avsing (1 4+ cos O — (1 + cos Gy L
B 2 Rz (1--cos 8)" — ny (1 + cos §)™

The integration constant B was chosen in accordance with condition (9}, Substituting
(17) into (13), we find that

(17

C v
85 [r2 (1 + cos §)™ — ny (1 + cos $)"|2F P= X (8
Here P is the Prandtl number. The cdnstant € can be determined from condition (9),
o Avn (1 4+ AP
T 00 /0T
Finally, the constant 4 can be determined from the condition of a constant thermal flax
(10). Substituting @, and &, into (10), we obtain

CTO4PE dF 2 1 Qdajor

P | S — T ———

(1.1 X[Tm (‘dﬂ v(2— ) T peP } dv =— 2rvie.d
1

; nz !, (19)
Fo=nyw™—nw!
Eq. (19) gives 4 in terms of the heat source power ¢ and of the fluid parameters, so that
A for a given fluid depends only on Q.
From (19) we see that small Q correspong to amall 4. Expanding the integral in (19) in
powers of A, we find that for small Q
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I —

da/oT (20)
Znvnx te

For arbitrary Q the integral in (19) cannot be investigated in general form. But for a giv-
en Prandtl number the function 4 (Q) can be found by numerical integration in the required

interval of A values. interval of A values.
307a Fig, 1 shows the curve of A (Q) for water (P = 7).
Clearly, 4 is a single-valued function of Q throughout
20 the entire range of 4 values considered.
From (19) we see that the domain of existence of the
1+ integral in (19) is bounded with respect to 4, i.e. for
-40000 40008 negative A values of sufficiently large absclute value
1 71— the integral in (19) (and with it the whole of the solution
N obtained) is meaningless. This occurs for values of 4
L for which ¥ (v) vanishes. The functions @,(3) and B,
Fig. 1 {0) then go to infinity and the integral in é9) loses its

meaning. Let us find this terminal value of 4.
We begin by showing that this value lies to the left of {— 1), Let us set

e= VILt.1
F (v) = (1/28 —_— 1/2) v'/2+'/25 + (1/28 + 1/2) vl/,,_l/,e —
= VZ_J [8 cosh (1/28 In 7)) — ginh (1/28 In ?))], (1 ‘g v \<\: 2)

Clearly, F (v) does not vanish for any v in the range 1 £ v £ 2 provided that A > — 1
(i.e. provided that ¢ is real and not equal to zero). At the point &€ = 0 (4 = — 1) the resul-
ting value is formally useless. This is because at the point A = — 1 Eq, (16) has an adjoint
solution, so that

exp S udy -= const (»"* 4+ Bv'*Inz) (21

The functions @, (¢) and @, (8) which can be found from (21) do not have singularities.
Hence, a solution exists for ¢ = 0.

We may, however, disregard the adjoint solution and to obtain the solution for € = 0 by
taking the limit of the resulting solution (17) and (18) as 4 + — 1. The integral in (19) ex-
ists in this case. Thus, the point &€ = 0 (4 = — 1) is not the terminal point for the solution
obtained. Let us now consider 4 < — 1, for which we have

F(@)=1iVvlle| cos (/3]&|1nv) —sin (Y] e]|ln 2)] 1<<r<K2)

If F(v)= 0, then

tan(Y, | e|1lnv) = |e|

This Eq. has roots. The smallest value of || for which a root lies in the interval 1K vg
£ 2 satisfies the condition
tan(¥/y ] ee [ In 2) = | &, ]

Hence, |e,| = 3.73, s0 that 4y = — 1 — |&4| 2= — 14.9. Thus, the solution of the problem
obtained above ceases to exist for 4 = 44 = ~ 14,9,

3b
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Figs. 2 to 4 indicate the character of the motion and of the temperature field. The cal-
culations were carried out for water. Fig. 2 shows the streamlines (A = 2.24) and Fig. 3
the isotherms for 4 = 0.44 (3a) and A = 2.24 (3b). Isotherm 3a corres-
pouds to small Q. In this case heat transfer occurs largely through
thermal diffusion. Figs. 2 and 3b afford a clear piciure of the capil-
lary convection mechanism: the capillary forces give rise to a char-
acteristic spread of the fluid along the surface with *‘suck-in’* toward
the vertical. In spreading from the heat source along the surface the
fluid takes the isothemns with it, so that the latter are extended al-
ong the surface, while the stream *‘sucked in'’ along the z-axis com-
presaes the isotherms at the center. Finally, the shape of the iso-
therms indicates that a boundary layer is formed néar the surface {a
sufficient distance away from the heat source).

For negative values of A the fluid flows along the surface toward
the origin (toward the heat source), bunching the isotherms toward
the vertical axis. It flows inward into the depths of the fluid along
the vertical axis, taking the isotherms with it, This behavior of the
isotherms is clearly apparent from Fig. 4, where they are shown for 4 = — 2.33. The corres-
ponding streamlines resemble those in Fig. 2, although the direction of motion is now rever-
sed.

The anthors are grateful to G.F. Shaidurov for drawing their attention to the problem.

Fig. 4
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